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Abstract—Deep learning with a large number of parameters
requires distributed training, where model accuracy and runtime
are two important factors to be considered. However, there has
been no systematic study of the tradeoff between these two factors
during the model training process. This paper presents Rudra, a
parameter server based distributed computing framework tuned
for training large-scale deep neural networks. Using variants of
the asynchronous stochastic gradient descent algorithm we study
the impact of synchronization protocol, stale gradient updates,
minibatch size, learning rates, and number of learners on runtime
performance and model accuracy. We introduce a new learning
rate modulation strategy to counter the effect of stale gradients
and propose a new synchronization protocol that can effectively
bound the staleness in gradients, improve runtime performance
and achieve good model accuracy. Our empirical investigation
reveals a principled approach for distributed training of neural
networks: the mini-batch size per learner should be reduced
as more learners are added to the system to preserve the model
accuracy. We validate this approach using commonly-used image
classification benchmarks: CIFAR10 and ImageNet.

I. INTRODUCTION

Deep neural network based models have achieved unparal-
leled accuracy in cognitive tasks such as speech recognition,
object detection, and natural language processing [18]. For
certain image classification benchmarks, deep neural net-
works have been touted to even surpass human-level perfor-
mance [13, 11]. Such accomplishments are made possible by
the ability to perform fast, supervised training of complex
neural network architectures using large quantities of labeled
data. Training a deep neural network translates into solving a
non-convex optimization problem in a very high dimensional
space, and in the absence of a solid theoretical framework
to solve such problems, practitioners are forced to rely on
trial-and-error empirical observations to design heuristics that
help obtain a well-trained model[2]. Naturally, fast training of
deep neural network models can enable rapid evaluation of
different network architectures and facilitate a more thorough
hyper-parameter optimization for these models. Recent years
have seen a resurgence of interest in deploying large-scale
computing infrastructure designed specifically for training
deep neural networks. Some notable efforts in this direction
include distributed computing infrastructure using thousands
of CPU cores [4, 7], high-end graphics processors (GPUs)[16],
or a combination of CPUs and GPUs [5].
The large-scale deep learning problem can hence be viewed

as a confluence of elements from machine learning (ML) and
high-performance computing (HPC). Much of the work in the
ML community is focused on non-convex optimization, model

selection, and hyper-parameter tuning to improve the neural
network’s performance (measured as classification accuracy)
while working under the constraints of the computational
resources available in a single computing node (CPU with
or without GPU acceleration). From a HPC perspective, prior
work has addressed, to some extent, the problem of accel-
erating the neural network training by mapping the asyn-
chronous version of mini-batch stochastic gradient descent
(SGD) algorithm onto multiple computing nodes. Contrary
to the popular belief that asynchrony necessarily improves
model accuracy, we find that adopting the approach of scale-
out deep learning using asynchronous-SGD, gives rise to
complex interdependencies between the training algorithm’s
hyperparameters and the distributed implementation’s design
choices (synchronization protocol, number of learners), ulti-
mately impacting the neural network’s accuracy and the overall
system’s runtime performance.
In this paper we presentRudra, a parameter server based

deep learning framework to study these interdependencies
and undertake an empirical evaluation with public image
classification benchmarks. Our key contributions are:

1) A systematic technique (vector clock) for quantifying the
staleness of gradient descent parameter updates.

2) An investigation of the impact of the interdependence
of training algorithm’s hyperparameters (mini-batch size,
learning rate (gradient descent step size)) and distributed
implementation’s parameters (gradient staleness, number
of learners) on the neural network’s classification accu-
racy and training time.

3) A new learning rate tuning strategy that reduces the effect
of stale parameter updates.

4) A new synchronization protocol to reduce network band-
width overheads while achieving good classification ac-
curacy and runtime performance.

5) An observation that to maintain a given level of model
accuracy, it is necessary to reduce the mini-batch size as
the number of learners is increased. This suggests a hard
limit on the amount of parallelism that can be exploited
in training a given model.

II. BACKGROUND

A neural network computes a parametric, non-linear trans-
formationfθ:X→Y, whereθrepresents a set of adjustable
parameters (or weights). In a supervised learning context
(such as image classification),X is the input image andY
corresponds to the label assigned to the image. A deep neural
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network organizes the parametersθinto multiplelayers, each
of which consists of a linear transformation followed by a non-
linear function such as sigmoid, tanh, etc. In a feed-forward
deep neural network, the layers are arranged hierarchically
such that the output of the layerl−1feeds into the input
of layerl. The terminal layer generates the network’s output
Ŷ=fθ(X), corresponding to the inputX.
A neural network training algorithm seeks to find a set

of parametersθ∗that minimizes the discrepancy betweeñY
and the ground truthY. This is usually accomplished by
defining a differentiable cost functionC(̂Y,Y)and iteratively
updating each of the model parameters using some variant of
the gradient descent algorithm:

Em =
1

m

m

s=1
C Ŷs,Ys , (1a)

∇θ(k)(t)= ∂Em/∂θ
(k) (t), (1b)

θ(k)(t+1)=θ(k)(t)−α(t)∇θ(k)(t) (1c)

whereθ(k)(t)represents thekthparameter at iterationt,α
is the step size (also known as the learning rate) andm is
the batch size. The batch gradient descent algorithm setsm
to be equal to the total number of training examplesN. Due
to the large amount of training data, deep neural networks
are typically trained using the Stochastic Gradient Descent
(SGD), where the parameters are updated with a randomly
selected training example(Xs,Ys). The performance of SGD
can be improved by computing the gradients using amini-
batchcontainingm=μ Ntraining examples.
Deep neural networks are generally considered hard to
train [2, 10, 23] and the trained model’s generalization error
depends strongly on hyperparameters such as the initializa-
tions, learning rates, mini-batch size, network architecture,
etc. In addition, neural networks are prone to overfit the data.
Regularization methods (e.g., weight decay and dropout) [16]
applied during training have been shown to combat overfitting
and reduce the generalization error.
Scale-out deep learning: A typical implementation of dis-
tributed training of deep neural networks consists of a mas-
ter (parameter server) that orchestrates the work among one
or more slaves (learners). Each learner does the followings:

1)getMinibatch: Select randomly a mini-batch of ex-
amples from the training data.

2)pullWeights: Request the parameter server for the
current set of weights/parameters.

3)calcGradient: Compute gradients based on the train-
ing error for the current mini-batch (equation 1b).

4)pushGradient: Send the computed gradients to the
parameter server

The parameter server maintains a global view of the model
weights and performs the following functions:
1)sumGradients: Receive and accumulate the gradients
from the learners.

2)applyUpdate: Multiply the accumulated gradient by
the learning rate and update the weights (equation 1c)

Learners exploitdata parallelismby each maintaining a
copy of the entire model, and training independently over a

unique mini-batch. Themodel parallelismapproach augments
this framework by splitting the neural network model across
multiple learners. With model parallelism, each learner trains
only a portion of the network; edges that cross learner bound-
aries must be synchronized before gradients can be computed
for the entire model.
Several different synchronization strategies are possible.

The most commonly used one is the asynchronous protocol,
in which the learners work completely independently of each
other and the parameter server. Section III will discuss three
different synchronization strategies, each associated with a
unique tradeoff between model accuracy and runtime.

III. DESIGN ANDIMPLEMENTATION

A. Terminology

Throughout the paper, we use the following definitions:
•Parameter Server: a server that holds the model weights.
[22] describes a typical parameter server using a dis-
tributed key-value store to synchronize state between
processes. The parameter server collects gradients from
learners and updates the weights accordingly.

•Learner: A computing process that can calculate weight
updates (gradients).

•μ: mini-batch size.
•α: learning rate.
•λ: number of learners.
•Epoch: a pass through the entire training dataset.
•Timestamp: we use a scalar clock [20] to represent
weights timestamptsi, starting fromi=0. Each weight
update increments the timestamp by 1. The timestamp of
a gradient is the same as the timestamp of the weight
used to compute the gradient.

•σ: staleness of the gradient. A gradient with timestamp
tsiis pushed to the parameter server with current weight
timestamptsj, wheretsj≥tsi. We define the staleness
of this gradientσasj−i.

• σ, average staleness of gradients. The timestamps
of the set of n gradients that triggers the ad-
vancement of weights timestamp fromtsi−1 totsi
form a vector clock [17] tsi1,tsi2, ..., tsin , where
max{i1,i2, ..., in}<i. The average staleness of gradi-
entsσ is defined as:

σ =(i−1)−mean(i1,i2, ..., in) (2)

•Hardsync protocol: To advance weights timestamp from
tsitotsi+1, each learner calculates exactly one mini-
batch and sends its gradient∇θlto the parameter server.
The parameter server averages the gradients and updates
the weights according to Equation (3), then broadcasts
the new weights to all learners. Staleness in the hardsync
protocol is always zero.

∇θ(k)(i)=
1

λ

λ

l=1
∇θ

(k)
l

θ(k)(i+1)=θ(k)(i)−α∇θ(k)(i)
(3)

•Async protocol: Each learner calculates the gradients
and asynchronously pushes/pulls the gradients/weights
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Fig. 1. Rudra-base architecture

to/from parameter server. The Async weight update rule
is given by:

∇θ(k)(i)=∇θ
(k)
l ,Ll∈L1, ..., Lλ

θ(k)(i+1)=θ(k)(i)−α∇θ(k)(i)
(4)

Gradient staleness may be hard to control due to the
asynchrony in the system. [7] describeDownpour SGD,
an implementation of the Async protocol for a commodity
scale-out system in which the staleness can be as large
as hundreds.

•n-softsync protocol: Each learner pulls the weights from
the parameter server, calculates the gradients and pushes
the gradients to the parameter server. The parameter
server updates the weights after collecting at leastc=
(λ/n) gradients. The splitting parameterncan vary
from 1 toλ. Then-softsync weight update rule is given
by:

c= (λ/n)

∇θ(k)(i)=
1

c

c

l=1
∇θ

(k)
l ,Lj∈L1, ..., Lλ

θ(k)(i+1)=θ(k)(i)−α∇θ(k)(i)

(5)

In Section V-A we will show that in a homogeneous
cluster where each learner proceeds at roughly the same
speed, the staleness of the model can be empirically
bounded at2n.Note that whennis equal toλ, the
weight update rule at the parameter server is exactly
the same as in Async protocol.

B. Rudra-base System Architecture

Figure 1 illustrates the parameter server design that we use
to study the interplay of hyperparameter tuning and system
scale-out factor. This system implements both hardsync and n-
softsync protocols. The arrows between each entity represent
a (group of) MPI message(s), except the communication
betweenLearnerandData Server, which is achieved by a
global file system. We describe each entity’s role and its
implementation below.
Learneris a single-process multithreaded SGD solver. Before
training each mini-batch, a learner pulls the weights and
the corresponding timestamp from the parameter server. A
learner reduces thepullWeightstraffic by first inquiring
the timestamp from the parameter server: if the timestamp is
as old as the local weights’, then this learner does not pull
the weights. After training the mini-batch, learner sends the

(a) Rudra-adv architecture (b) Rudra-adv∗architecture

Fig. 2. Rudra-adv architecture

gradients along with gradients’ timestamp to parameter server.
The size of pull and push messages is the same as the model
size plus the size of scalar timestamp equal to one.
Data Serveris hosted on IBM GPFS, a global file system.
Each learner has an I/O thread, which prefetches the mini-
batch via random sampling prior to training. Prefetching is
completely overlapped with the computation.
Parameter Serveris a multithreaded process, that accumulates
gradients from each learner and applies update rules according
to Equations (3–5). In this study, we implemented hardsync
protocol andn-softsync protocol. Learning rate is configured
differently in either protocol. In hardsync protocol, the learning
rate is multiplied by a factor λμ/B, whereBis the batch
size of the reference model. In then-softsync protocol, the
learning rate is multiplied by the reciprocal of staleness. We
demonstrate in Section V-A that this treatment of learning rate
inn-softsync can significantly improve the model accuracy.
Parameter server records the vector clock of each weight
update to keep track of the the average staleness. When a
specified number of epochs are trained, parameter server shuts
down each learner.
Statistics Serveris a multithreaded process that receives the
training error from each learner and receives the model from
the parameter server at the end of each epoch and tests the
model. It monitors the model training quality.

This architecture is non-blocking everywhere except for
pushing up gradients and pushing down weights, which are
blocking MPI calls (e.g.MPI_Send). Parameter server han-
dles each incoming message one by one (the message handling
itself is multithreaded). In this way, we can precisely control
how each learner’s gradients are received and handled by the
parameter server. The purpose of Rudra-base is to control the
noise of the system, so that we can study the interplay of scale-
out factor and the hyperparameter selection. For a moderately-
sized dataset like CIFAR-10, Rudra-base shows good scale-out
factor (see Section V-B).

C. Rudra-adv and Rudra-adv∗System Architecture

To achieve high classification accuracy, the required model
size may be quite large (e.g. hundreds of MBs). In many cases,
to achieve best possible model accuracy, mini-batch sizeμ
must be small, as we will demonstrate in Section V-B. In order
to meet these requirements with acceptable performance, we
implemented Rudra-adv and Rudra-adv∗.
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Rudra-adv system architecture. Rudra-base clearly is not

a scalable solution when the model gets large. Under ideal

circumstances (see Section IV-A for our experimental hard-

ware system specification), a single learner pushing a model

of 300MB (size of a typical deep neural network, see sec-

tion IV-B) would take more than 10ms to transfer this data.

If 16 tasks are sending 300MB to the same receiver and there

is link contention, it would take over a second for the messages

to be delivered.

To alleviate the network traffic to parameter server, we

build a parameter server group that forms a tree. We co-

locate each tree leaf node on the same node as the learners

for which it is responsible. Each node in the parameter server

group is responsible for averaging the gradients sent from its

learners and relaying the averaged gradient to its parent. The

root node in the parameter server group is responsible for

applying weight update and broadcasting the updated weights.

Each non-leaf node pulls the weights from its parent and

responds to its children’s weight pulling requests. Rudra-adv

can significantly improve performance compared to Rudra-

base and manage to scale out to large model and small μ, while

maintaining the control of the gradients’ staleness. Figure 2(a)

illustrates the system architecture for Rudra-adv. Red boxes

represent the parameter server group, in which the gradients

are pushed and aggregated upwards. Green boxes represent

learners, each learner pushes the gradient to its parameter

server parent and receives weights from its parameter server

parent. The key difference between Rudra-adv and a sharded

parameter server design (e.g., Distbelief [7] and Adam [4])

is that the weights maintained in Rudra-adv have the same

timestamps whereas shared parameter servers maintain the

weights with different timestamps. Having consistent weights

makes the analysis of hyperparameter/scale-out interplay much

more tractable.

Rudra-adv∗ system architecture. We built Rudra-adv∗ to

further improve the runtime performance in two ways:

Broadcast weights within learners. To further reduce the

traffic to the parameter server group, we form a tree within

all learners and broadcast the weights down this tree. In this

way the network links to/from learners are also utilized.

Asynchronous pushGradient and pullWeights. Ide-

ally, one would use MPI non-blocking send calls to asyn-

chronously send gradients and weights. However, depend-

ing on the MPI implementation, it is difficult to guarantee

if the non-blocking send calls make progress in the back-

ground [1]. Therefore we open additional communication

threads and use MPI blocking send calls in the threads. Each

learner process runs two additional communication threads:

the pullWeights thread and pushGradient thread. In

this manner, computing can continue without waiting for the

communication. Note that since we need to control μ (the

smaller μ is, the better model converges, as we demon-

strate in Section V-B), we must guarantee that the learner

pushes each calculated gradient to the server. Alternatively,

one could locally accrue gradients and send the sum, as

in [7], however that will effectively increase μ. For this

Implementation Communication overlap (%)
Rudra-base 11.52
Rudra-adv 56.75
Rudra-adv∗ 99.56

TABLE I
COMMUNICATION OVERLAP MEASURED IN RUDRA-BASE, RUDRA-ADV,

RUDRA-ADV∗ FOR AN ADVERSARIAL SCENARIO, WHERE THE MINI-BATCH

SIZE IS THE SMALLEST POSSIBLE FOR 4-WAY MULTI-THREADED

LEARNERS, MODEL SIZE 300MB, AND THERE ARE ABOUT 60 LEARENERS.

reason, the pushGradient thread cannot start sending the

current gradient before the previous one has been delivered.

As demonstrated in Table I that as long as we can optimize

the use of network links, this constraint has no bearing on

the runtime performance, even when μ is extremely small.

In contrast, pullWeights thread has no such constraint

– we maintain a computation buffer and a communication

buffer for pullWeights thread, and the communication

always happens in the background. To use the newly received

weights only requires a pointer swap. Figure 2(b) illustrates the

system architecture for Rudra-adv∗. Different from Rudra-adv,

each learner continuously receives weights from the weights

downcast tree, which consists of the top level parameter server

node and all the learners.

We measure the communication overlap by calculating the

ratio between computation time and the sum of computation

and communication time. Table I records the the communica-

tion overlap for Rudra-base, Rudra-adv, and Rudra-adv∗ in

an adversarial scenario. Rudra-adv∗ can almost completely

overlap computation with communication. Rudra-adv∗ can

scale out to very large model size and work with smallest

possible size of mini-batch. In Section V-E, we demonstrate

Rudra-adv∗’s effectiveness in improving runtime performance

while achieving good model accuracy.

IV. METHODOLOGY

A. Hardware and software environment

We deploy the Rudra distributed deep learning framework

on a P775 supercomputer. Each node of this system con-

tains four eight-core 3.84GHz POWER7 processors, one

optical connect controller chip and 128GB of memory. A

single node has a theoretical floating point peak performance

of 982Gflop/s, memory bandwidth of 512GB/s and bi-

directional interconnect bandwidth of 192GB/s.
The cluster operating system is Red Hat Enterprise Linux

6.4. To compile and run Rudra we used the IBM xlC compiler

version 12.1 with the -O3 -q64 -qsmp options, ESSL for

BLAS subroutines, and IBM MPI (IBM Parallel Operating

Environment 1.2).

B. Benchmark datasets and neural network architectures

To evaluate Rudra’s scale-out performance we employ

two commonly used image classification benchmark datasets:

CIFAR10 [15] and ImageNet [9]. The CIFAR10 dataset

comprises of a total of 60,000 RGB images of size 32 ×
32 pixels partitioned into the training set (50,000 images) and

the test set (10,000 images). Each image belongs to one of the
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10 classes, with 6000 images per class. For this dataset, we
construct a deep convolutional neural network (CNN) with 3
convolutional layers each followed by a subsampling/pooling
layer. The output of the 3rdpooling layer connects, via a
fully-connected layer, to a 10-way softmax output layer that
generates a probability distribution over the 10 output classes.
This neural network architecture closely mimics theCIFAR10
model (cifar10full.prototxt) available as a part of the open-
source Caffe deep learning package [14]. The total number of
trainable parameters in this network are∼90K, resulting
in the model size of∼350 kBwhen using 32-bit floating
point data representation. The neural network is trained using
momentum-accelerated mini-batch SGD with a batch size of
128 and momentum set to 0.9. As a data preprocessing step,
the per-pixel mean is computed over the entire training dataset
and subtracted from the input to the neural network. The
training is performed for 140 epochs and results in a model
that achieves 17.9% misclassification error rate on the test
dataset. The base learning rateα0is set to 0.001 are reduced
by a factor of 10 after the 120thand 130thepoch. This learning
rate schedule proves to be quite essential in obtaining the low
test error of 17.9%.

Our second benchmark dataset is collection of natural
images used as a part of the 2012 edition of theImageNet
Large Scale Visual Recognition Challenge (ILSVRC 2012).
The training set is a subset of the hand-labeledImageNet
database and contains 1.2 million images. The validation
dataset has 50,000 images. Each image maps to one of
the 1000 non-overlapping object categories. The images are
converted to a fixed resolution of 256×256 to be used input
to a deep convolution neural network. For this dataset, we
consider the neural network architecture introduced in [16]
consisting of 5 convolutional layers and 3 fully-connected
layers. The last layer outputs the probability distribution over
the 1000 object categories. In all, the neural network has
∼72 million trainable parameters and the total model size is
289 MB. The network is trained using momentum-accelerated
SGD with a batch size of 256 and momentum set to 0.9.
Similar to theCIFAR10benchmark, per-pixel mean computed
over the entire training dataset is subtracted from the input
image feeding into the neural network. To prevent overfitting,
a weight regularization penalty of 0.0005 is applied to all the
layers in the network and a dropout of 50% is applied to the
1stand 2ndfully-connected layers. The initial learning rateα0
is set equal to 0.01 and reduced by a factor of 10 after the
15thand 25thepoch. Training for 30 epochs results in a top-1
error of 43.95% and top-51error of 20.55% on the validation
set.

V. EVALUATION

In this section we present results of evaluation of our scale-
out deep learning training implementation. For an initial design

1The top-5 error corresponds to the fraction of samples where the correct
label does not appear in the top-5 labels considered most probable by the
model
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Fig. 3. Average staleness σ of the gradients as a function of the weight
update step at the parameter server when using (a) 1-softsync, 2-softsync and
(b)λ-softsync protocol. Inset in (b) shows the distribution of the gradient
staleness values forλ-softsync protocol. Number of learnersλis set to 30.

space exploration, we use theCIFAR10dataset and Rudra-
base system architecture. Subsequently we extend our findings
to theImageNetdataset using the Rudra-adv and Rudra-adv∗

system architectures.

A. Stale gradients

In the hardsync protocol introduced in section III-A, the
transition fromθ(i)toθ(i+1)involves aggregating the gra-
dients calculated withθ(i). As a result, each of the gradients
∇θlcarries with it a stalenessσequal to 0. However, departing
from the hardsync protocol towards either then-softsync or
the Async protocol inevitably adds staleness to the gradients,
as a subset of the learners contribute gradients calculated using
weights with timestamp earlier than the current timestamp of
the weights at the parameter server.
To measure the effect of gradient staleness when using the

n-softsync protocol, we use theCIFAR10dataset and train
the neural network described in section IV-B usingλ=30
learners. For the1-softsync protocol, the parameter server
updates the current set of weights when it has received a total
of 30 gradients from the learners. Similarly, the2-softsync
protocol forces the parameter server to accumulateλ/2=15
gradient contributions from the learners before updating the
weights. As shown in Figure 3(a) the average staleness σfor
the 1-softsync and 2-softsync protocols remains close to 1 and
2, respectively. In the 1-softsync protocol, the stalenessσLlfor
the gradients computed by the learnerLltakes values 0, 1, or
2, whereasσLl ∈{0,1,2,3,4}for the 2-softsync protocol.
Figure 3(b) shows the gradient staleness for then-softsync
protocol wheren=λ=30. In this case, the parameter server
updates the weights after receiving a gradient from any of the
learners. A large fraction of the gradients have staleness close
to 30, and only with a very low probability (<0.0001) doesσ
exceed2n=60. These measurements show that, in general,
σLl∈{0,1,...,2n}andσ =nfor our implementation of
then-softsync protocol.
Modifying the learning rate for stale gradients:In our ex-

periments with then-softsync protocol we found it beneficial,
and at times necessary, to modulate the learning rateαto take
into account the staleness of the gradients. For then-softsync
protocol, we set the learning rate as:

α=α0/σ =α0/n (6)

whereα0is the learning rate used for the baseline (control)
experiment:μ= 128,λ=1. Figure 4 shows a set of
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Fig. 5.(σ, μ, λ)tradeoff curves for the hardsync protocol. The dashed black
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=(0,128,1)on theCIFAR10dataset.

representative results illustrating the benefits of adopting this
learning rate modulation strategy. We show the evolution
of the test error on theCIFAR10dataset as a function of
the training epoch for two different configurations of then-
softsync protocol (n=4,n=30) and set the number of
learners,λ=30. In both these configurations, setting the
learning rate in accordance with equation (6) results in lower
test error as compared with the cases where the learning rate is
set toα0. Surprisingly, the configuration30-softsync,λ=30,
α=α0fails to converge and shows a constant high error rate
of 90%. Reducing the learning rate by a factorσ=n=30
makes the model with much lower test error2.

B.(σ, μ, λ)tradeoff curves

Hyperparameter optimization plays a central role in ob-
taining good accuracy from neural network models [3]. For
the SGD training algorithm, this includes a search over the
neural network’s training parameters such as learning rates,
weight regularization, depth of the network, mini-batch size
etc. in order to improve the quality of the trained neural
network model (quantified as the error on the validation
dataset). Additionally, when distributing the training problem
across multiple learners, parameters such as the number of
learners and the synchronization protocol enforced amongst
the learners impact not only the runtime of the algorithm but
also the quality of the trained model.
An exhaustive search over the space defined by these

parameters for joint optimization of the runtime performance
and the model quality can prove to be a daunting task even

2Although not explored as a part of this work, it is certainly possible to
implement a finer-grained learning rate modulation strategy that depends on
the staleness of each of gradients computed by the learners instead of the
average staleness. Such a strategy should apply smaller learning rates to staler
gradients

(a) (b)

Fig. 6.(σ, μ, λ)tradeoff curves for (a)λ-softsync protocol and (b)1-softsync
protocol. Shaded region in shows the region bounded byμ= 128,λ=30,
andμ=4contours for the hardsync protocol.λ ∈ {1,2,4,10,18,30}
andμ∈{4,8,16,32,64,128}. Note that forλ=1,n-softsync protocol
degenerates to the hardsync protocol

for a small model such as that used for theCIFAR10
dataset, and clearly intractable for models and datasets the
scale ofImageNet. To develop a better understanding of the
interdependence among the various tunable parameters in the
distributed deep learning problem, we introduce the notion of
(σ, μ, λ)tradeoff curves. A(σ, μ, λ)tradeoff curve plots the
error on the validation set (or test set) and the total time to
train the model (wall clock time) for different configurations
of average gradient stalenessσ, mini-batch size per learner
μ, and the number of learnersλ. The configurations(σ, μ, λ)
that achieve the virtuous combination of low test error and
small training time are preferred and form ideal candidates
for further hyperparameter optimization.

We run3 the CIFAR10 benchmark for
λ ∈ {1,2,4,10,18,30}andμ∈{4,8,16,32,64,128}.
Figure 5 shows a set of(σ, μ, λ)curves for the hardsync
protocol i.e.σ=0. The baseline configuration withλ=1
learner and mini-batch sizeμ= 128achieves a test error
of 17.9%. With the exception of modifying the learning
rate asα = α0 μλ/128, all the other neural network’s
hyperparameters were kept unchanged from the baseline
configuration while generating the data points for different
values ofμandλ. Note that it is possible to achieve test
error lower than the baseline by reducing the mini-batch size
from 128 to 4. However, this configuration (indicated on the
plot as(σ, μ, λ)=(0,4,1)) increases training time compared
with the baseline. This is primarily due to the fact that the
dominant computation performed by the learners involves
multiple calls to matrix multiplication (GEMM) to compute
WX where samples in a mini-batch form columns of the
matrixX. Reducing the mini-batch size cause a proportionate
decrease in the GEMM throughput and slower processing of
the mini-batch by the learner.

In Figure 5, the contour labeledμ= 128is the configura-
tions with the mini-batch size per learner is kept constant at
128 and the number of learners is varied fromλ=1toλ=30.

3The mapping betweenλand the number of computing nodesηis(λ, η)=
{(1,1),(2,1),(4,2),(10,4),(18,4),(30,8)}
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The training time reduces monotonically withλ, albeit at the
expense of an increase in the test error. Traversing along the
λ=30contour from configuration(σ, μ, λ)=(0,128,30)to
(σ, μ, λ)=(0,4,30)(i.e. reducing the mini-batch size from
128 to 4) helps restore much of this degradation in the test
error by partially sacrificing the speed-up obtained by the
virtue of scaling out to 30 learners.

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

μ = 128

S
p
e
e
d 
u
p

Number of Learners, λ

 Hardsync

 λ-Softsync
 1-Softsync
 linear speed up

(a)

0 5 10 15 20 25 30

0

5

10

15

20

25

30

35

μ = 4 Hardsync

 λ-Softsync
 1-Softsync
 linear speed up

S
p
e
e
d 
u
p

Number of Learners, λ

(b)

Fig. 7. Speed-up in the training time for mini-batch size and (a)μ= 128(b)
μ=4for 3 different protocols: hardsync,λ-softsync, and1-softsync. Speed-
up numbers in (a) and (b) are calculated relative to(σ, μ, λ)=(0,128,1)
and(σ, μ, λ)=(0,4,1), respectively.

Figure 6(a) shows(σ, μ, λ)tradeoff curves for theλ-
softsync protocol. In this protocol, the parameter server up-
dates the weights as soon as it receives a gradient from any of
the learners. Therefore, as shown in section V-A the average
gradient stalenessσ=λandσmax ≤2λwith high probabil-
ity. The learning rate is set in accordance with equation 6. All
the other hyperparameters are left unchanged from the baseline
configuration. Qualitatively, the(σ, μ, λ)tradeoff curves for
λ-softsync look similar to those observed for the hardsync
protocol. In this case, however, the degradation in the test error
relative to the baseline for the(σ, μ, λ)=(30,128,30)config-
uration is much more pronounced. As observed previously, this
increase in the test error can largely be mitigated by reducing
the size of mini-batch processed by each learner (λ=30
contour). Note, however, the sharp increase in the training
time for the configuration(σ, μ, λ)=(30,4,30)as compared
with(σ, μ, λ)=(30,128,30). The smaller mini-batch size not
only reduces the computational throughput at each learner,
but also increases the frequency ofpushGradientand
pullWeightsrequests at the parameter server. In addi-
tion, small mini-batch size increases the frequency of weight
updates at the parameter server. Since in the Rudra-base
architecture (section III-B), the learner does not proceed with
the computation on the next mini-batch till it has received the
updated gradients, the traffic at the parameter server and the
more frequent weight updates can delay servicing the learner’s
pullWeightsrequest, potentially stalling the gradient com-
putation at the learner. Interestingly, all the configurations
along theμ=4contour show similar, if not better, test error
as the baseline. For these configurations, the average staleness
varies between 2 and 30.From this empirical observation, we
infer that a small mini-batch size per learner confers upon the
training algorithm a fairly high degree of immunity to stale
gradients.
The1-softsync protocol shows(σ, μ, λ)tradeoff curves

(Figure 6(b)) that appear nearly identical to those observed

for theλ-softsync protocol. In this case, the average staleness
is 1 irrespective of the number of learners. Since the parameter
server waits forλgradients to arrive before updating the
weights, there is a net reduction in thepullWeightstraffic
at the parameter server (see section III-B). As a result, the
1-softsync protocol avoids the degradation in runtime ob-
served in theλ-softsync protocol for the configuration with
μ=4andλ=30. The distinction in terms of the runtime
performance between these two protocols becomes obvious
when comparing the speed-ups obtained for different mini-
batch sizes (Figure 7). Forμ= 128, the1-softsync and
λ-softsync protocol demonstrate similar speed-ups over the
baseline configuration for uptoλ=30learners. In this case,
the communication between the learners and the parameter
server is sporadic enough to prevent the learners from waiting
onthe parameter server for updated weights. However, as the
number of learners is increased beyond 30, the bottlenecks
at the parameter server are expected to diminish the speed-up
obtainable using theλ-softsync protocol. The effect of frequent
pushGradientandpullWeightsrequests due to smaller
at the parameter manifest clearly as the mini-batch size is
reduced to 4, in which case, theλ-softsync protocol shows
subdued speed-up compared with1-softsync protocol. In either
scenario, the hardsync protocol fares the worst in terms of
runtime performance improvement when scaling out to large
number of learners. The upside of adopting the hardsync
protocol, however, is that it achieves substantially lower test
error, even for large mini-batch sizes.

C.μλ=constant

In the hardsync protocol, given a configuration withλ
learners and mini-batch sizeμper learner, the parameter server
averages theλnumber of gradients reported to it by the
learners. Using equations (1) and (3):

∇θ(k)(i) =
1

λ

λ

l=1

∇θ
(k)
l =

1

λ

λ

l=1

⎛

⎝1

μ

μ

s=1

∂C Ŷs,Ys

∂θ
(k)
l (i)

⎞

⎠

=
1

μλ

μλ

s=1

∂C Ŷs,Ys

∂θ(k)(i)
(7)

The last step equation (7) is valid since each training ex-
ample(Xs,Ys)is drawn independently from the training
set and also because the hardsync protocol ensures that all
the learners compute gradients on identical set of weights

i.e.θ
(k)
l (i) =θ

(k)(i)∀ l∈{1,2,...,λ}. According to
equation (7), the configurations(σ, μ, λ)=(0,μ0λ0,1)and
(σ, μ, λ)=(0,μ0,λ0)are equivalent from the perspective of
stochastic gradient descent optimization. In general, hardsync
configurations with the sameμλproduct are expected to give
nearly4the same test error.
In Table II we report the test error at the end of 140

epochs for configurations withμλ=constant. Interestingly,
we find that even for then-softsync protocol, configurations

4small differences in the final test error achieved may arise due to the
inherent nondeterminism of random sampling in stochastic gradient descent
and the random initialization of the weights.
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tiny

σ μ λ
Test
error

Training
time(s)

1 4 30 18.09% 1573
30 4 30 18.41% 2073

μλ ≈ 128 18 8 18 18.92% 2488
10 16 10 18.79% 3396
4 32 4 18.82% 7776
2 64 2 17.96% 13449

1 8 30 20.04% 1478
30 8 30 19.65% 1509
18 16 18 20.33% 2938

μλ ≈ 256 10 32 10 20.82% 3518
4 64 4 20.70% 6631
2 128 2 19.52% 11797
1 128 2 19.59% 11924

1 16 30 23.25% 1469
30 16 30 22.14% 1502

μλ ≈ 512 18 32 18 23.63% 2255
10 64 10 24.08% 2683
4 128 4 23.01% 7089

1 32 30 27.16% 1299
30 32 30 27.27% 1420

μλ ≈ 1024 18 64 18 28.31% 1713
1 128 10 29.83% 2551
10 128 10 29.90% 2626

TABLE II
Results on CIFAR10 benchmark: TEST ERROR AT THE END OF 140

EPOCHS AND TRAINING TIME FOR (σ, μ, λ) CONFIGURATIONS WITH

μλ = CONSTANT.

that maintain μλ = constant achieve comparable test errors. At

the same time, the test error turns out to be rather independent

of the staleness in the gradients for a given μλ product. For

instance, Table II shows that when μλ ≈ 128, but the (average)

gradient staleness is allowed to vary between 1 and 30, the test

error stays ∼18-19%. Although this result may seem counter-

intuitive, a plausible explanation emerges when considering

the measurements shown earlier in Figure 3, that our im-

plementation of the n-softsync protocol achieves an average

gradient staleness of n while bounding the maximum staleness

at 2n. Consequently, at any stage in the gradient descent

algorithm, the weights being used by the different learners

(θl(t)) do not differ significantly and can be considered to

be approximately the same. The quality of this approximation

improves when each update

θ(k)(i+ 1) = θ(k)(i)− α∇θ(k)(i)

creates only a small displacement in the weight space. This

can be controlled by suitably tuning the learning rate α.

Qualitatively, the learning rate should decrease as the staleness

in the system increases in order to reduce the divergence across

the weights seen by the learners. The learning rate modulation

of equation (6) achieves precisely this effect.

These results help define a principled approach for dis-

tributed training of neural networks: the mini-batch size per
learner should be reduced as more learners are added to the
system in way that keeps μλ product constant. In addition,
the learning rate should be modulated to account for stale
gradients. In Table II, 1-softsync (σ = 1) protocol invariably

shows the smallest training time for any μλ. This is expected,

σ μ λ
Synchronization

protocol
Test
error

Training
time(s)

1 4 30 1-softsync 18.09% 1573
0 8 30 Hardsync 18.56% 1995
30 4 30 30-softsync 18.41% 2073
0 4 30 Hardsync 18.15% 2235
18 8 18 18-softsyc 18.92% 2488

TABLE III
Results on CIFAR10 benchmark: TOP-5 BEST (σ, μ, λ) CONFIGURATIONS

THAT ACHIEVE A COMBINATION OF LOW TEST ERROR AND SMALL

TRAINING TIME.

since the 1-softsync protocol minimizes the traffic at the

parameter server. Table II also shows that the test error

increases monotonically with the μλ product. These results

reveal the scalability limits under the constraints of preserving

the model accuracy. Since the smallest possible mini-batch size

is 1, the maximum number of learners is bounded. This upper

bound on the maximum number of learners can be relaxed

if an inferior model is acceptable. Alternatively, it may be

possible to reduce the test error for higher μλ by running

for more number of epochs. In such a scenario, adding more

learners to the system may give diminishing improvements

in the overall runtime. From machine learning perspective,

this points to an interesting research direction on designing

optimization algorithm and learning strategies that perform

well with large mini-batch sizes.

D. Summary of results on CIFAR10 benchmark

Table III summarizes the results obtained on the CIFAR10
dataset using the Rudra-base system architecture. As a ref-

erence for comparison, the baseline configuration (σ, μ, λ) =
(0, 128, 1) achieves a test error of 17.9% and takes 22,392

seconds to finish training 140 epochs.

E. Results on ImageNet benchmark

The large model size of the neural network used for the

ImageNet benchmark and the associated computational cost

of training this model prohibits an exhaustive state space

exploration. The baseline configuration (μ = 256, λ = 1)

takes 54 hours/epoch. Guided by the results of section V-C,

we first consider a configuration with μ = 16, λ = 18 and

employ the Rudra-base architecture with hardsync protocol

(base-hardsync). This configuration performs training at the

speed of ∼330 minutes/epoch and achieves a top-5 error of

20.85%, matching the accuracy of the baseline configuration

(μ = 256, λ = 1, section IV-B).

The synchronization overheads associated with the hardsync

protocol deteriorate the runtime performance and the training

speed can be further improved by switching over to the 1-

softsync protocol. Training using the 1-softsync protocol with

mini-batch size of μ = 16 and 18 learners takes ∼270

minutes/epoch, reaching a top-1 (top-5) accuracy of 45.63%

(22.08%) by the end of 30 epochs (base-softsync). For this

particular benchmark, the training setup for the 1-softsync

protocol differs from the hardsync protocol in certain subtle,

but important ways. First, we use an adaptive learning rate
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Configuration Architecture μ λ
Synchronization
protocol

Validation
error(top-1)

Validation
error (top-5)

Training time
(minutes/epoch)

base-hardsync Rudra-base 16 18 Hardsync 44.35% 20.85% 330
base-softsync Rudra-base 16 18 1-softsync 45.63% 22.08% 270
adv-softsync Rudra-adv 4 54 1-softsync 46.09% 22.44% 212
adv∗-softsync Rudra-adv∗ 4 54 1-softsync 46.53% 23.38% 125

TABLE IV
Results onImageNetbenchmark:VALIDATION ERROR AT THE END OF30EPOCHS AND TRAINING TIME PER EPOCH FOR DIFFERENT CONFIGURATIONS.

method (AdaGrad [8, 7]) to improve the stability of SGD when
training using the1-softsync protocol. Second, to improve
convergence we adopt the strategy of warmstarting [21] the
training procedure by initializing the network’s weights from
a model trained with hardsync for 1 epoch.

Further improvement in the runtime performance may be
obtained by adding more learners to the system. However,
as observed in the previous section, increase in the number
of learners needs to be accompanied by a reduction in the
mini-batch size to prevent degradation in the accuracy of the
trained model. The combination of a large number of learners
and a small mini-batch size represents a scenario where the
Rudra-base architecture may suffer from a bottleneck at the
parameter server due to the frequentpushGradientand
pullWeightsrequests. These effects are expected to be
more pronounced for large models such asImageNet. The
Rudra-adv architecture alleviates these bottlenecks, to some
extent, by implementing a parameter server group organized in
a tree structure.λ=54learners, each processing a mini-batch
sizeμ=4trains at∼212 minutes/epoch when using Rudra-
adv architecture and1-softsync protocol (adv-softsync). As in
the case of Rudra-base, the average staleness in the gradients
is close to 1 and this configuration also achieves a top-1(top-5)
error of 46.09%(22.44%).

The Rudra-adv∗architecture improves the runtime further
by preventing the computation at the learner from stalling
on the parameter server. However, this improvement in per-
formance comes at the cost of increasing the average stale-
ness in the gradients, which may deteriorate the quality of
the trained model. The previous configuration runs at∼125
minutes/epoch, but suffers an increase in the top-1 validation
error (46.53%) when using Rudra-adv∗ architecture (adv∗-
softsync). Table IV summarizes the results obtained for the
4 configurations discussed above. It is worth mentioning that
the configurationμ=8,λ=54 performs significantly
worse, producing a model that gives top-1 error of>50%
but trains at a speed of∼96 minutes/epoch. This supports our
observation that scaling out to large number of learners must
be accompanied by reducing the mini-batch size per learner
so the quality of the trained model can be preserved.

Figure 8 compares the evolution of the top-1 validation error
during training for the 4 different configuration summarized in
Table IV. The training speed follows the orderadv∗-softsync>
adv-softsync>base-softsync>base-hardsync. As a result,
adv∗-softsyncis the first configuration to hit the 48% validation
error mark. Configurations other thanbase-hardsyncshow

+

Fig. 8. Results onImageNetbenchmark:Error on the validation set as a
function of training time for the configurations listed in Table IV

marginally higher validation error compared with the baseline.
As mentioned earlier, the experiments with1-softsync proto-
col use AdaGrad to achieve stable convergence. It is well-
documented [24, 21] that AdaGrad is sensitive to the initial
setting on the learning rates. We speculate that tuning the
initial learning rate can help recover the slight loss of accuracy
for the1-softsync runs.

VI. RELATEDWORKS

To accelerate training of deep neural networks and han-
dle large dataset and model size, many researchers have
adopted GPU-based solutions, either single-GPU [16] or multi-
GPU [26] GPUs provide enormous computing power and are
particularly suited for the matrix multiplications which are
the core of many deep learning implementations. However,
the relatively limited memory available on GPUs may restrict
their applicability to large model sizes.
Distbelief [7] pioneered scale-out deep learning on CPUs.

Distbelief is built on tens of thousands of commodity PCs and
employs both model parallelism via dividing a single model
between learners, and data parallelism via model replication.
To reduce traffic to the parameter server, Distbelief shards
parameters over a parameter server group. Learners asyn-
chronously push gradients and pull weights from the parameter
server. The frequency of communication can be tuned via
npushandnfetchparameters.
More recently, Adam [4] employs a similar system archi-
tecture to DistBelief, while improving on Distbelief in two
respects: (1) better system tuning, e.g. customized concurrent
memory allocator, better linear algebra library implementation,
and passing activation and error gradient vector instead of the
weights update; and (2) leveraging the recent improvement in
machine learning, in particular convolutional neural network
to achieve better model accuracy.
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In any parameter server based deep learning system [12],

staleness will negatively impact model accuracy. Orthogonal to

the system design, many researchers have proposed solutions

to counter staleness in the system, such as bounding the

staleness in the system [6] or changing optimization objective

function, such as elastic averaging SGD [25]. In this paper, we

empirically study how staleness affects the model accuracy and

discover the heuristics that smaller mini-batch size can effec-

tively counter system staleness. In our experiments, we derive

this heuristics from a small problem size(e.g., CIFAR10) and

we find this heuristic is applicable even to much larger problem

size (e.g., ImageNet). Our finding coincides with a very

recent theoretical paper [19], in which the authors prove that in

order to achieve linear speedup using asynchronous protocol

while maintaining good model accuracy, one needs to increase

the number of weight updates conducted at the parameter

server. In our system, this theoretical finding is equivalent to

keeping constant number of training epochs while reducing the

mini-batch size. To the best of our knowledge, our work is the

first systematic study of the tradeoff between model accuracy

and runtime performance for distributed deep learning.

VII. CONCLUSION

In this paper, we empirically studied the interplay of hyper-

parameter tuning and scale-out in three protocols for commu-

nicating model weights in asynchronous stochastic gradient

descent. We divide the learning rate by the average staleness of

gradients, resulting in faster convergence and lower test error.

Our experiments show that the 1-softsync protocol (in which

the parameter server accumulates λ gradients before updating

the weights) minimizes gradient staleness and achieves the

lowest runtime for a given test error. We found that to maintain

a model accuracy, it is necessary to reduce the mini-batch

size as the number of learners is increased. This suggests an

upper limit on the level of parallelism that can be exploited

for a given model, and consequently a need for algorithms that

permit training over larger batch sizes.
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